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entropy flux F is related to U and to the flux f by F 9 5
U 9f 9. The (weak) solution of (1.1)–(1.4) is then unique.We use the Legendre spectral viscosity method to solve nonlinear

conservation laws. This method essentially consists in adding a In this paper, we are interested in computing the entropic
spectral viscosity to the equations for the high wavenumbers of solution of Eq. (1.1), i.e., the unique weak solution satis-
the numerical solution. This viscosity is sufficient to stabilize the fying the entropy inequality (1.4) for all convex entropy
numerical scheme while small enough to retain spectral accuracy.

U. This will be obtained by using spectral methods.Several tests are considered including the 1D and 2D Euler equations
Spectral methods consist in finding the first Fourier-likeof gas dynamics. Q 1996 Academic Press, Inc.

coefficients of the solution of partial differential equations
(pure spectral method) or the values of this solution at

1. INTRODUCTION some Gauss nodes (collocation method). These methods
have been used successfully in the computation of regular

Consider the following problem, find u(x, t) solution of solutions of PDE [3, 5]. The rate of covergence of the
the scalar conservation law numerical solution u N depends on the regularity of the

exact solution u; for example, if u is C y-regular then
­t u 1 ­x f(u) 5 0 (1.1) the error iu 2 u N i goes to 0 faster than any power of

1/N ; this is the so-called spectral accuracy.
associated with the initial data This attractive accuracy property is desirable when

applying spectral methods to hyperbolic laws. Unfor-
tunately, the solutions of such problems may developu(x, 0) 5 u0(x) (1.2)
discontinuities and it is well known that polynomial
approximations of discontinuous functions exhibit spuriousand appropriate boundary conditions. Here t . 0, x lies
oscillations (Gibbs phenomenon) that slow down their con-in some open interval V of R and the flux f is a regular
vergence. Let (wk) denote either the Fourier or Legendrefunction of u. It is well known that solutions of Eq. (1.1)
basis, u(x, t) 5 ok ûk(t)wk(x) the solution of the consideredmay develop discontinuities even if the initial data u0 is
problem and uN(x, t) 5 ouku#N ûN

k (t)wk(x) the numerical solu-regular. Hence there may be no classical (i.e., smooth)
tion obtained by a spectral method. Since the truncated se-solution of this equation after certain critical time ts . To
ries fNu(x, t) 5 ouku#N ûk(t)wk(x) is the best approximationovercome this, one defines weak solutions [12], as solutions
of u (in the L2 sense) by polynomials of degree #N, the errorsatisfying, for all test function w [ C y

0 (V 3 R1)
iuN 2 ui is larger than ifN u 2 ui which decreases at most
like 1/N when the solution u contains discontinuities. ThisEE

V3R
1

(u­t w 1 f(u)­xw) dx dt 1 E
V

u0w dx 5 0. (1.3) slow convergence is inherent to the Gibbs phenomenon.
It is clear that one must pay attention when applying

spectral methods to solve problems with discontinuousSuch weak solutions may not be unique; in order to ensure
solutions; the oscillations produced by the Gibbs phenome-the uniqueness of the solution, and for physical reasons
non often grow up due to the nonlinearities and theone imposes that the weak solution satisfies an additional
calculations fail. A key issue is the control of the Gibbsinequality called entropy inequality,
phenomenon, this is obtained by the Legendre spectral
vanishing viscosity (LSVV) method which is presented in­t U(u) 1 ­x F(u) # 0, (1.4)
this paper. This method consists in adding a small viscosity
on the high coefficients of the numerical solution. Thiswhere the entropy function U is a regular function and the
viscosity is shown to be at the same time small enough to
retain the spectral accuracy and strong enough to stabilize
the computations so that it ensures the convergence to* E-mail: ould@ann.jussieu.fr.
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the entropic solution. The polynomial approximation uN 2. THE LEGENDRE VISCOSITY METHOD
is defined as the unique solution of the variational problem

We first present the original spectral (Fourier) viscosity(2.6). It can also be viewed as the solution of two colloca-
method or spectral vanishing viscosity (SVV) methodtion problems: one is defined in the interior of the domain;
introduced in [19]. Consider Eq. (1.1) with 2f-periodicthe other is defined at the boundaries of the domain (see
boundary conditions; the solution is then 2f-periodic,Eq. (3.1)–(3.2)).

Note that, unlike most of the spectral schemes for hyper-
bolic equations, the SVV method is a shock capturing u(x, t) 5 O1y

k52y

ûk(t)eikx. (2.1)
method; hence it does not require the computation of the
location of the discontinuities.

Recently, a Chebyshev spectral viscosity method The spectral (Fourier) approximation of Eq. (1.1) leads to
(CSVV) was successfully applied in [2] for the simulation finding uN (x, t) such that
of waves in a stratified atmosphere.

The main difference between the Chebyshev and the ­t uN 1 ­xfN f(uN ) 5 0 (2.2)
Legendre spectral vanishing viscosity method relies on the

uN (x, 0) 5 fN u0(x), (2.3)choice of collocation points. The interest of the Chebyshev
method is related to the possibility of using a fast transform

where uN belong to the space SN of trigonometric polyno-to compute the nonlinear products. This feature is notice-
mials of degree less than or equal to N and fN is the L2-able when using polynomials of degree larger than 100
orthogonal projection onto SN . It can be shown [20] that,(say). This is the case for problems with complicated struc-
unless the flux f is genuinely nonlinear (i.e., f 0 ; 0), uNtures for which high order of approximation is required.
cannot converge even weakly to the entropic solution u.The interest of the Legendre approximation, on the
However, (2.2) is a spectrally accurate approximation ofother hand, relies on the relative ease for handling the
the conservation law (1.1) since the discretisation error (inboundary conditions (see the literature on the spectral
a weak norm) iselement method for elliptic problems); instead of using a

very high degree polynomial the idea is based on breaking
up the domain into smaller pieces and approximating the i(I 2 fN ) f(uN )iH2s # CN 2siuiL2 ;s $ 0. (2.4)
solution by piecewise polynomials of degree less than 100.
We refer to [8] for more details on this approach. On In order to overcome the lack of convergence of the scheme
the theoretical side, the analysis of the Legendre spectral while retaining the infinite high order accuracy (2.4),
approximation is easier than for the Chebyshev approxima- Tadmor [19] proposed adding artificial viscosity on the
tion since this latter method requires weighted spaces; con- high Fourier modes of (2.2), the problem is then to find
sult [3]. uN (x, t) [ SN such that

We will compute also the solutions of systems of conser-
vation laws. The problem is to find u(x, t) 5 (u1, ..., up) [ ­t uN 1 ­xfN f(uN ) 5 «­x Q m­x uN, (2.5)
Rp such that

where
­t u 1 ­x f(u) 5 0 (1.5)

• « 5 «N is the (positive) viscosity amplitude, recall that
without viscosity (i.e., «N 5 0) the spectral solution doesand u(x, 0) 5 u0(x), where f : Rp R Rp is a vector function.
not converge to the entropic solution, actually «N must notWe are interested also in computing the solutions of
decrease too fast to 0 (at most as 1/N).multidimensional systems which involve different fluxes;

for example, in the 2D case the problem is to find u(x, y, • Q m denotes the spectral viscosity operator defined for
t) 5 (u1, ..., up) [ Rp satisfying v 5 o1y

k52y v̂keikx by Q mv 5 oN
k52N q̂kv̂keikx; the viscosity

coefficients satisfy
­tu 1 ­x f(u) 1 ­y g(u) 5 0 (1.6)

q̂k 5 0 for uku # mN , 0 # q̂k # 1 for mN , uku # N.
and the initial condition u(x, y, 0) 5 u0(x, y).

The organization of the paper is as follows: in Section The viscosity operator Q m acts only on the high wavenum-
2 we introduce the Legendre spectral viscosity method. In bers, the parameter mN indicates the level from which this
Section 3, we show how to implement this method. In operator acts, it is supposed that
Section 4 we solve some test problems that prove its effi-
ciency. Finally Section 5 is devoted to some concluding re- lim

NR1y
mN 5 1y.

marks.
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This scheme is analysed in [13], where the Ly boundedness (n 1 1)Ln11(x) 5 (2n 1 1)xLn(x) 2 nLn21(x). They are
orthogonal on [21, 1] for the usual scalar product,and the convergence, via compensated compactness argu-

ments, are proven: at any time T . 0,

E1

21
Ln(x)Lm(x) dx 5

2
2n 1 1

dn,muN (?, T) R u(?, T) strong in L2.

This is a slow convergence since the best polynomial ap-
(dn,m is the Kronecker symbol).

proximation (in the L2 sense) of
• Qm denotes now the Legendre viscosity operator de-

fined for v 5 o1y
k50 v̂k Lk by Q mv 5 oN

k50 q̂kv̂k Lk .
u(x, T) 5 O1y

k52y

ûk (T)eikx

• B(uN ) is a polynomial of degree less or equal than N
which should enable uN (x, t) to satisfy exactly the required
inflow boundary conditions.is given by the truncated series

• I N is the interpolation operator at the Gauss–Lobatto
Legendre quadrature points and (?, ?)N is the associatedfN u(x, T) 5 ON

k52N
ûk(T)eikx

discrete scalar product. For continuous functions u and v,

and when u is discontinuous, the error ifN u 2 ui decreases
(u, v)N 5 ON

i50
u(ji )v(ji )wi ,like O(1/N); hence the convergence rate of uN (?, T) is at

most 1. Actually the following convergence rate of the
spectral viscosity solution (take m 5 N b ) is proven in [18]:

where the ji’s and the wi’s are respectively the nodes and
weights of the Gauss-Lobatto Legendre quadratureiuN (?, T) 2 u(?, T)iL1 # CN 2b, b , As .
formula:

The scheme (2.5) may be interpreted as a way to add a
small viscosity on the high wavenumbers. To see that con- E1

21
v(x) dx Q ON

i50
v(ji)wi , (2.7)

sider the system of ordinary differential equations satisfied
by the Fourier coefficients of the numerical solution
uN(x, t) 5 oN

k52N ûN
k (t)eikx, this formula being exact for v [ P2N21 .

For the analysis of the scheme (2.6), we refer to [14]d
dt

ûN
k (t) 1 f(uN

`

)k 5 0 for uku # mN, where the convergence of uN toward the entropic solution
is proven assuming 1 2 (mN /k)4 # q̂k # 1 for k . mN .

We present now the algorithm for computing the spectrald
dt

ûN
k (t) 1 f(uN

`

)k 5 2«N k2q̂k ûN
k (t) for mN , uku # N.

approximation of a nonlinear conservation law; there are
two different steps, namely:

The evolution of the inviscid portion of the spectrum
• Applying the spectral viscosity method to stabilize the(uku # mN ) follows the original conservation law (1.1), while

scheme, this step gives a polynomial uN. When the exactthe last portion of the spectrum (mN , uku # N) is damped.
solution u contains discontinuities, this approximation isWhen the approximated solution u is not periodic, the
oscillatory and at most first order.LSVV method introduced in [14] is defined by finding

uN(x, t) in the space PN of algebraic polynomials of degree • To recover a spectral accuracy, uN is posttreated (at
less than or equal to N as the solution of the following the end of the computation) by filtering; this step will be
variational problem: for all w in PN described in the next section.

(­t u N 1 ­x IN f(uN ), w)N
(2.6)

3. IMPLEMENTATION

5 2«N (Q m­xuN, ­xw)N 1 (B(uN ), w)N ,
3.1. 1D Scalar

where First observe that the Legendre viscosity method (2.6)
can be implemented as a collocation method. For the sake
of simplicity, let us consider the case where there is an• uN 5 oN

k50 ûN
k Lk is the numerical solution spanned in

the Legendre basis (Lk)k$0 . The Legendre polynomials are inflow condition at x 5 21 and an outflow condition at
x 5 11, in this case the polynomial B(uN) isdefined by L0(x) 5 1, L1(x) 5 x, and the recurrence formula
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B(uN )(j, t) 5 t(t)(1 2 j)L9N (j), ­x(IN u)(x) 5 ON
i50

ui­x hi(x),

so it vanishes at all the collocation points except the inflow
and then the coefficients of DN areboundary 21 (recall that the Legendre Gauss Lobatto

points are the N 1 1 zeros of (1 2 x 2)L9N (x)). The parame-
ter t(t) allows for imposing exactly the boundary condi- DN (i, j) 5 h9j (ji), 0 # i, j # N.
tions and is not computed.

Now take w 5 hi in (2.6), where hi is the Lagrange • The Legendre viscosity operator Vm . Given the (N 1
characteristic polynomial of PN associated with the nodes 1) values v(ji) of a function v at the collocation points ji ,
ji , satisfying hi (j j ) 5 dij , 0 # i, j # N. Straightforward we define the (N 1 1) 3 (N 1 1) matrix Vm by
computations give (use summation by parts and exactness
of formula (2.7) for v [ P2N21):

• At the interior nodes 1 # i # N 2 1, Vm 1
v(j0)

?
?
?

v(jN)
25 1

­x Q m­x (I Nv)(j0)

?
?
?

­x Q m­x (I Nv)(jN)
2 .

­t uN (ji , t) 1 ­x I N f(uN )(ji , t) 5 «N ­x Qm(­xuN )(ji , t),
(3.1)

Clearly,

this is Eq. (2.6), regularized by a viscous term and discret-
ized by a standard collocation method. ­x Qm­x(INv)(x) 5 ON

i50
ui ­x Qm ­x (hi )(x),

• At the outflow boundary x 5 1:

and the coefficients of Vm are
­t uN (11, t) 1 ­x IN f(uN )(11, t)

(3.2)
Vm (i, j) 5 ­x Qm­x (hj)(ji), 0 # i, j # N.

5 «N­x Qm(­xuN )(11, t) 2
«N

gN
Qm(­x uN )(11, t) .

Equation (3.1) can now be written in a compact form

The strange term on the right-hand side of (3.2) prevents
d
dt

UN 1 DN FN 5 «NVmUN , (3.3)
the creation of a boundary layer. Equations (3.1)–(3.2),
together with the prescribed inflow data uN (21, t) 5 g(t),

wheregive an easy implementation of the viscosity approxima-
tion (2.6).

For an efficient resolution of (3.1), we construct two
UN 5 1

uN (j0)

?
?
?

uN (jN)
2 , FN 5 1

f(uN )(j0)

?
?
?

f(uN )(jN)
2 .linear operators:

• The Legendre differentiation operator DN . Given the
(N 1 1) values v(ji) of a function v at the collocation

Remark. Equation (3.3) is modified at the boundariespoints ji , we define the (N 1 1) 3 (N 1 1) matrix DN by
to take into account the boundary conditions; for example,
if x 5 1 is an outflow boundary, the extra term in the right-
hand side of (3.2) is added to the last line of (3.3).

DN 1
v(j0)

?
?
?

v(jN)
25 1

­x(I Nv)(j0)

?
?
?

­x(INv)(jN )
2 . We discretise the differential equation (3.3) as follows:

let dt denote the time step and U n
N the approximation at

time tn 5 ndt. An Adams–Bashforth-type scheme of order
2 leads to

Writing

U n11
N 2 U n

N

dt
1 DN F n11/2

N 5 «NVmU n
N ,

IN u(x) 5 ON
i50

uihi(x),

where F n11/2
N is a conservative extrapolation of FN at time

tn11/2 5 tn 1 dt/2:it follows that
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F n11/2
N 5 FN (U N,n11/2), U N,n11/2 5 Ds U N,n 2 As U N,n21. 3.3. 2D Systems(3.4)

For the two-dimensional system (1.6), the right-hand
The restriction on the time step dt is determined by the side of (3.6) must be replaced by (for the sake of clearness

usual CFL-like condition for spectral methods (see [10]), we consider the case where the number of nodes is the
same in each direction)

dt # C
1

N 2 ,

O4
i51 1

« i
1Vmi

1
0 0

?
?
?

?
?

?
?
?
?

0 0 « i
pVmi

p

21
UN,1

?
?
?

UN,p
2 , (3.7)according to the concentration of the Gauss points near 61.

Remark. The implementation of the LSVV method
does not require the usual (but expensive) reconstruction

wherefrom cell averages to point values.

Vm1
k

5 ­x Qm1
k
­x , Vm2

k
5 ­x Qm2

k
­y ,3.2. 1D Systems

We will show in the next section the efficiency of the Vm3
k

5 ­y Qm3
k
­x , Vm4

k
5 ­y Qm4

k
­y .

LSVV method for scalar problems. A natural way to ex-
tend it for systems consists in turning the system from the For scalar multidimensional problems this reduces to
conservative form into the characteristic one. The viscosity
is then applied on the characteristic variables. However, as O4

i51
«i VmiUN . (3.8)well known the computation of the solutions of nonlinear

conservation laws requires the use of the conservative form
of these equations; otherwise, the calculations give a false

Let us now introduce the filter used to improve the(nonentropic) solution. The transformation from the con-
accuracy of the spectral solution in order to get a highservative form to the characteristic one and vice versa must
order approximation.be done at every time step. This switch back and forth is

very time consuming but sometimes necessary. Consult the 3.4. Filtering
finite differences literature about this. Here we apply the

This point is motivated by the fact that informationsviscosity directly on the conservative variables; the fluxes
about the exact solution are contained in this high resolu-are evaluated pointwisely and this provides good results.
tion schemeLet us notice that the LSVV method for system does not

require neither cell averaging technique, nor field by field • Spectral accuracy. It has been proven in [1] for linear
decomposition. periodic hyperbolic problems that the solution uN given

At the interior nodes, the LSVV approximation of sys- by spectral (Fourier) methods at time t are very close to
tem (1.5) is fN u(x, t) 5 oN

k52N ûk (t)eikx. Hence the spectral solution
uN (?, t) should be considered as an accurate approximation

­tuN (ji , t) 1 ­xIN f(uN )(ji , t) 5 Q(uN). (3.5) of fN u(?, t), rather than u(?, t) itself in both cases of Le-
gendre and Fourier approximations. This fact is checked

Here, uN ; (uN
1 , ..., uN

p )T [ P p
N denotes the polynomial numerically for nonlinear problems.

approximation of the vector u 5 (u1, ..., up)T, and Q is a • Physical accuracy. It is well known that truncated se-
general p 3 p spectral viscosity matrix which is activated ries fN u provides highly accurate approximation of u when
only on high Legendre modes. Using obvious notations, u is sufficiently smooth. If u is discontinuous, fN u produces
the system (3.5) is written as spurious oscillations (Gibb’s phenomenon) and its accu-

racy is deteriorated. To enhance the convergence rate in
such cases, we introduce a filter F such that the pointwise
error uu(x) 2 F (fN u)(x)u is locally spectrally small.d

dt 1
UN,1

?
?
?

UN,p
21 1

DN 0 0
?
?
?

?
?

?
?
?
?

0 0 DN
21

FN,1

?
?
?

FN,p
2

(3.6)
The filter we used depends on two parameters (u, b) [

(0, 1)2 and is defined by (p 5 [N b ])

F u,pu(x) 5 E1

21
C u,p(x; y)u(y) dy, (3.9)

5 1
«1Vm1 0 0

?
?
?

?
?

?
?
?
?

0 0 «pVmp
21

UN,1

?
?
?

UN,p
2 .

where
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C u,p(x; y) 5 r Sx 2 y
u
DKp(x; y),

r(x) [ C y
0 (21, 1) is a localizer satisfying r(0) 5 1, and

Kp(x; y) is the Christoffel–Darboux kernel

Kp(x ; y) 5 Op
j50

Lj (x)Lj (y)
iLj i2 .

The local error uu(x) 2 F u,p(fN u)(x)u is spectrally small,
except in a neighborhood of the discontinuities; consult
[17] for details. The multidimensional filter is obtained by
tensorisation of (3.9).

4. NUMERICAL RESULTS
FIG. 1. Linear advection equation; exact solution (solid line) and

numerical solution (1), N 5 40, dt 5 5 1023.Most of the tests presented here are taken from the
literature about high order methods for hyperbolic prob-
lems: essentially nonoscillatory finite differences methods

present the results after one period (t 5 2). The solution[15, 11] and spectral shock-fitting methods [4].
is displayed in Fig. 1; Fig. 2 shows the pointwise errorIn all the computations reported in this section, the time
uuN(x) 2 u(x)u, while the Fig. 3 shows the L2 error computeddiscretization is the explicit scheme (3.4). For systems the
on a uniform grid of 100 points.results were obtained using a simple viscosity matrix for

each component, i.e., in (3.6) we take
4.2. Examples ii. Burgers Equation

«1 5 ? ? ? 5 «p, m1 5 ? ? ? 5 mp The inviscid Burgers equation is a model of hyperbolic
scalar conservation law; it corresponds to Eq. (1.1) with

and viscosity coefficients quadratic flux f(u) 5 Asu2.

1. High order accuracy. Take the initial data:q̂k 5 0

q̂k 5 e2(k2N)« /(k2m)2

for uku # m,

for m , uku # N.
(4.1)

u(x, 0) 5 2sin(fx), (4.3)

with boundary conditions u(61, t) 5 0. The solution ofFor multidimensional problems, we apply a tensorized vis-
cosity operator for each component; i.e., in (3.7) we put

«2
k 5 «3

k 5 0, k 5 1, ..., p.

The mode from which the viscosity acts is m 5 5ÏN and
the viscosity amplitude is «N 5 1/N.

4.1. Example i. Linear Advection Equation

We consider Eq. (1.1) in the linear case f(u) 5 u.

First, we want to verify that the LSVV method is high
order accurate even at extrema points. To do this we con-
sider the following initial data,

u(x, 0) 5 sin4(fx), (4.2)

with periodic boundary conditions at 61. The exact solu-
tion is u(x, t) 5 u(x 2 t, 0) so that the local errors and FIG. 2. Linear advection equation; the pointwise errors uuN(x) 2

u(x)u.the accuracy are easily computed. We take N 5 40 and
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FIG. 3. Linear advection equation; error (in the L2 norm) as function
FIG. 5. Burgers equation with smooth initial data; solution at timeof time N 5 40.

t 5 1/2f, the pointwise errors uuN 2 uu.

this problem develops a discontinuity at time ts 5 1/f; this
stationary shock is located at point xs 5 0. The numerical u(x, t) 5 Oy

k50
ûk(t)Lk(x),

solution (N 5 49, dt 5 3 3 1024) and the exact one for
t 5 ts/2 (before the shock was forming) are displayed Fig.
4 and the pointwise error uuN 2 uu is shown in Fig. 5. and the best N degree polynomial approximation (for the
Clearly, the numerical solution uN gives a high order ap- L2 norm) of u is given by the trucated series
proximation of the exact solution. However, as time t ap-
proaches the critical time ts , the polynomial approximation

fN u(x, t) 5 ON
k50

ûk(t)Lk(x)uN oscillates more and more. To get enough resolution of
u (after filtering) one has to use more nodes. Figure 6
shows the oscillatory numerical approximation uN (N 5 which is oscillatory, of course. Clearly the numerical
99, d t 5 2/f 1024) and the exact solution u, after the forma- solution uN(?, 2ts) (plotted in Fig. 6) is an oscillatory
tion of the shock (t 5 2ts). approximation of u(?, 2ts) and may be considered in a

The oscillations in the polynomial uN are not surprising first step as a bad approximation of u in the physical
since for time t . ts , the solution u is discontinuous but space (the x space). It is, however, a good approximation
still admits a Legendre expansion of u in the space of frequencies (the ‘‘Fourier’’ space),

FIG. 4. Burgers equation with smooth initial data; exact solution
(dashed line) and numerical solution (1) at solution at time FIG. 6. Burgers equation with smooth initial data; solution at time

t 5 2/f, N 5 99, dt 5 0.63662 1024.t 5 1/2f, N 5 49, dt 5 3 1024.
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FIG. 9. Burgers equation with smooth initial data; solution at timeFIG. 7. Burgers equation with smooth initial data; the polynomials
t 5 2/f; filtered solution F u,puN with p 5 50, u 5 0.3.uN (1) and fN u (solid line) at time t 5 2/f.

to see that let us compare the two polynomials u N E0

21
u(x, t)Lk(x) dx 5

1
2
E1

21
u Sy 2 1

2
, tD Lk Sy 2 1

2 D dy
(?, 2ts) and fN u(?, 2ts) displayed in Fig. 7. For more
precise comparison we plot on Fig. 8 the Legendre
coefficients of the two polynomials. The coefficients ûk Q

1
2 O

M

i50
u Sj M

i 2 1
2

, tD Lk Sj M
i 2 1

2 D wM
i .

are computed by

Let us recall some results about the Burgers equation.
For x0 [ L, define in the (x, t) plane the straight lines

ûk 5
2k 1 1

2 HE0

21
u(x, t)Lk(x) dx 1 E1

0
u(x, t)Lk(x) dxJ ,

x 5 u0(x0)t 1 x0 ; (4.4)

where each integral is computed using a Gauss– the solution u is constant along such lines (called charac-
Lobatto–Legendre formula with M 5 100 nodes, teristics),
for example,

u(x, t) 5 u0(x0).

Hence to compute u(x, t) we search for x0 (foot of the
characteristic) defined by Eq. (4.4) (or compute directly
u using the implicit relation u(x, t) 5 u0(x 2 tu(x, t)).
Discontinuity appears when this equation has more than
one solution. In our case it is very easy to select the good
root corresponding to the entropic solution. The values
u(x, t) are evaluated with the machine precision using the
bissection method to compute x0 from (4.4).

The coefficients ûk(2ts) and ûN,k (2ts) are displayed in Fig.
8. Clearly the coefficients of the numerical solution are
close (except the higher ones) to those of the exact solution.
This motivates the use of the filtering procedure briefly
presented in the previous section since it is proven in [16]
that such a filter, when applied to fN u gives a highly accu-
rate approximation of u, except near the discontinuity.
Figure 9 shows the filtered numerical solution (with filter
parameters u 5 0.3, p 5 50) and the exact solution. WeFIG. 8. Burgers equation with smooth initial data; Legendre coeffi-

cients of uN (1) and u (solid line) at time t 5 2/f. present the pointwise errors uuN 2 uu and uFuN 2 uu in
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TABLE I

Burgers Equation with Smooth Initial Data

x uuN(x) 2 u(x)u uFuN(x) 2 u(x)u

21.00000 0.26368 10215 0.83106 10203

20.90000 0.23890 10203 0.21983 10204

20.80000 0.75911 10203 0.69810 10204

20.70000 0.18199 10202 0.19575 10203

20.60000 0.11610 10202 0.93667 10204

20.50000 0.14850 10202 0.15630 10203

20.40000 0.37973 10202 0.15813 10203

20.30000 0.23102 10202 0.10403 10202

20.20000 0.10124 10201 0.28235 10202

20.10000 0.91660 10201 0.96456 10203

0.00000 0.94775 10100 0.94775 10100

0.10000 0.91660 10201 0.96456 10203

0.20000 0.10124 10201 0.28235 10202

0.30000 0.23102 10202 0.10403 10202 FIG. 10. Burgers equation, stability; differences uuN(x, t) 2 uN(x, 0)u
0.40000 0.37973 10202 0.15813 10203 at time t 5 2 for N 5 79, dt 5 4 1024.
0.50000 0.14850 10202 0.15630 10203

0.60000 0.11610 10202 0.93667 10204

0.70000 0.18199 10202 0.19575 10203

0.80000 0.75911 10203 0.69810 10204

The solution of this problem is an expansion shock. Let0.90000 0.23890 10203 0.21983 10204

us recall that the basic finite difference centered schemes1.00000 0.00000 10100 0.83106 10203

let the initial expansion be unchanged. For this problem the
Note. Pointwise errors after the shock appears, t 5 2/f, N 5 99, dt 5 points 61 are outflow boundaries; at these points we use

0.16 3 1024. The filter parameters are p 5 50 and u 5 0.3

­t uN (21, t) 1 ­x I N f(uN )(21, t) 5 «N ­x Q m(­x u N )(21, t)
Table I. Note that, for this example a collocation method
without viscosity (using the same discretisation parame- 1

«N

gN
Qm(­xuN )(21, t)

ters) fails.
We conclude that the oscillatory numerical solution uN

­t uN (11, t) 1 ­x I N f(uN )(11, t) 5 «N ­x Q m(­x u N )(11, t)
contains high order information about the exact solution u.
This fact is proven for linear hyperbolic problems in [1] 2

«N

gN
Qm(­xuN )(11, t).

and seems to be valid for nonlinear problems. It is an
interesting challenge to prove this.

Note that for t . As, the initial discontinuity leaves the2. Stability. To check the stability of the method we
computational domain, hence the solution becomes regulartake the initial data:
on the whole interval [21, 1]. Figure 11 shows the (non
filtered) solution at times t 5 1, t 5 2, and t 5 3 for N 5 49.

u(x, 0) 5 5 1, if 21 # x , 0,

21, if 0 , x # 1,
(4.5)

4.3. Example iii. Nonconvex Flux

The last scalar one-dimensional test is related to a non-
augmented with boundary conditions at 61. We take u(21, convex flux. Consider Eq. (1.1) with f(u) 5 (u2 2 1)(u2 2
t) 5 1 and u(11, t) 5 21 for which the solution is a 4)/4 and the initial data:
stationnary shock. We run the program for a long period
and compare the solution obtained uN (N 5 79) with the
initial data, uN(x, 0) 5 IN u(x, 0), the error in L2-norm is

u(x, 0) 5 523, if 21 # x , 0,

3, if 0 , x # 1.
(4.7)plotted in Fig. 10.

3. Expansion shock. Riemann problem having an
expansion shock. We take the initial data

We solve this problem associated with outflow boundary
conditions, the solution at time t 5 0.04 (N 5 79, dt 5

u(x, 0) 5 522, if 21 # x , 0,

2, if 0 , x # 1.
(4.6) 1025) is plotted in Fig. 12 (the filter parameters are p 5

79 and u 5 0.3).
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FIG. 11. Burgers equation, expansion shock; solution at times t 5 1, FIG. 13. 1D Euler system; the contact discontinuity problem (den-
t 5 2, and t 5 3 for N 5 49, dt 5 1024. sity), exact solution (solid line) and numerical solution (dashed line) at

time t 5 2, for N 5 80, dt 5 1024 and filter parameters p 5 40, u 5 0.3.

4.4. Examples iv. Euler System of Gas Dynamics (1D) perfect and polytropic, p 5 A(s) rc, s is the entropy, e is
the internal energy per volume unit: e 5 rE 1 Asru2 and EThe Euler system of gas dynamics in conservative form is
is the energy per mass unit: (c 2 1)E 5 p/r. Equations
(4.8) express respectively the laws conservation of mass,­t u 1 ­x f(u) 5 0 (4.8)
momentum and total energy for the fluid.

where 1. Contact discontinuity. Consider the Euler system
(4.8) with initial conditions u 5 1, p 5 2, and

u 5 (r, ru, e)T (4.9)

and r(x) 5 5w(x 2 1), if x , 0,

w(x 1 1), if x . 0,
f(u) 5 (ru, p 1 ru2, u(e 1 p))T (4.10)

where w is a Hermit cubic that interpolates r 5 2 and
with the usual notation. r is the density of the fluid, u is

r 5 0.4 with zero slope on each end of the interval [21,
the velocity, p is the pressure. The gas is assumed to be 1], w is displaced so that the discontinuity is in the center

of the domain. With these choices the flow is subsonic and
the contact discontinuity moves through the domain; the
original density profile translates with velocity u (see [7]).
In the computations, we impose the exact solution at the
boundary x 5 21; the solution (density) for N 5 80 and
dt 5 1024 is shown in Fig. 13 (the filter parameters are
p 5 40 and u 5 0.3).

2. The Sod shock tube problem. Consider the Euler
system (4.8) with initial conditions

r 5 1

u 5 0

p 5 1
6 for x , x0,

r 5 0.125

u 5 0

p 5 0.1
6 for x . x0 .

We take x0 5 0 and fix the exact solution at 61. In the
computations, we use a scalar viscosity matrix; i.e., in (3.6)FIG. 12. Scalar equation with non convex flux and initial condition

(4.7) solution at time t 5 0.04 for N 5 79, dt 5 1025, p 5 79, and u 5 0.3. we take
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FIG. 15. 1D Euler system; the shock-disturbance problem, densityFIG. 14. 1D Euler system; the Sod shock tube problem, density at
at time t 5 0.36, for N 5 199, dt 5 1025.time t 5 0.3, for N 5 149, dt 5 0.15 1024 and filter parameters p 5 60,

u 5 0.2.

two parameters u and p. The filtered solution displayed in
Fig. 16 corresponds to p 5 60, u 5 0.2; for this choice, the«1 5 «2 5 «3 5 1/N, m1 5 m2 5 m3 5 5ÏN.
fine scales are destroyed while the large ones are quite
well reproduced. This is typically what low resolutionThe solution (density) for N 5 149 is displayed in Fig. 14
schemes do. In contrary, the choice p 5 100, u 5 0.4 (see(the filter parameters are p 5 60, u 5 0.2).
Fig. 17) gives a good resolution of the fine scales but doesIn this last example, the use of a high order method is
not really improve the solution in the large scales.no longer appropriate to reproduce the piecewise linear

solutions. In the following example, high order methods
4.5. Examples v. Linear Equations (2D)are necessary to handle the solution.

These problems deal with 2D linear systems.3. Shock-disturbance interactions. Consider the Euler
system (4.8) with initial conditions 1. Contact Discontinuity. Recall that usually the finite

difference numerical schemes smear more severely the
contact discontinuities (linear discontinuities) than the
shocks (nonlinear discontinuities). This test shows that the

r 5 3.857143

u 5 2.629369

p 5 10.33333
6 for x , x0,

r 5 1 1 l sin (5x)

u 5 0

p 5 1
6 for x . x0

with x0 5 24. This is a Mach 3 shock (that corresponds
to l 5 0) interacting with sine waves in density. The fine
structures in the density make it necessary to use a high
order method. The original domain [25, 5] is mapped on
the reference domain [21, 1]. For the computations we
take l 5 0.2 and fix the initial condition on the boundaries
at 61. The (nonfiltered) density profile at time t 5 0.36
for 200 points and dt 5 1025 is shown in Fig. 15. The
complicated flow field is well resolved; compare this with
the results presented in [15]. In this reference, it is shown
that a second-order MUSCL-type TVD scheme with 800
points does not catch the fine details in the density solution.
The ‘‘exact’’ solution (solid line) is the converged one
obtained by a third-order ENO scheme with 1200 points
(private communication of Prof. C. W. Shu). FIG. 16. 1D Euler system; the shock-disturbance problem, the same

as before, filtered solution p 5 60, u 5 0.2.Let us recall that the filtering procedure (3.9) involves
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(( f , g))N,M 5 ON
i50

OM
j50

f(j N
i , j M

j )g(j N
i , j M

j )wN
i wM

j

Q E1

21
E1

21
f(x, y)g(x, y) dx dy.

Choosing w 5 hi, j 5 hi(x)hj (y), one obtains

• at inner points (1 # i # N 2 1 and 1 # j # M 2 1):

­tuN,M (ji , j j , t) 1 ­x IN f(uN,M)(ji , j j , t)

1 ­ y IM g(uN,M)(ji , j j , t)

5 «1­x Qm1­xuN,M (ji , j j , t)

1 «2­y Qm2­y uN,M (ji , j j , t)FIG. 17. 1D Euler system; the shock-disturbance problem, the same
as before, filtered solution p 5 100, u 5 0.4.

• on the right boundary x 5 1, y ? 21, and y ? 1:

spectral viscosity method gives a good resolution of multi-
­tuN,M (1, j j , t) 1 ­x IN f(uN,M)(1, j j , t)dimensional contact discontinuities. The problem is to find

u(x, y, t) such that 1 ­ y IM g(uN,M)(1, j j , t)

5 «1­x Qm1­xuN,M (1, j j , t)
­tu 1 ­xu 1 ­yu 5 0 (4.11)

1 «2­y Qm2­y uN,M (1, j j , t)
with the initial discontinuous data: 2(«1 /wN) Qm1­xuN,M (1, j j , t)

• on the bottom boundary y 5 1, x ? 21, and x ? 1:u0(x, y) 5 50.5, if x2 1 y2 # R2

0, if x2 1 y2 . R2.
(4.12)

­tuN,M (ji , 1, t) 1 ­x IN f(uN,M)(ji , 1, t)
This discontinuity will propagate at a constant speed and

1 ­ y IM g(uN,M)(ji , 1, t)
height. This problem is well-posed if we impose boundary

5 «1­x Qm1­xuN,M (ji , 1, t)conditions on the sides x 5 21 and y 5 21. We take u(21,
y, t) 5 ũ(21, y, t) and u(x, 21, t) 5 ũ(x, 21, t), where ũ

1 «2­y Qm2­y uN,M (ji , 1, t)
is the solution of the associated periodic problem, the exact

2(«2 /wM) Qm2­yuN,M (ji , 1, t)solution is then u ; ũ. The Legendre viscosity approxima-
tion of this problem leads to find uN,M (x, y, t) [ PN,M , the
space of algebraic polynomials of two variables with degree

• at the corner x 5 1, y 5 1:in x (resp. y) less than or equal to N (resp. M) satisfying
for all w [ PN,M

­tuN,M (1, 1, t) 1 ­x IN f(uN,M)(1, 1, t)
((­t uN,M 1 ­x I N f(uN,M )

1 ­ y IM g(uN,M)(1, 1, t)
1 ­y I M g(uN,M ), w))N,M

5 «1­x Qm1­xuN,M (1, 1, t)
5 2 «1((Qm1 ­x uN,M, ­xw))N,M

1 «2­y Qm2­y uN,M (1, 1, t)
2 «2((Qm2 ­y uN,M, ­yw))N,M

2(«1 /wN) Qm1­xuN,M (1, 1, t)
1 ((B(uN,M ), w))N,M,

2 («2 /wM) Qm2­yuN,M (1, 1, t).

where ((?, ?))N,M denotes the 2D discrete scalar product
related to the Gauss–Lobatto Legendre nodes: The solution at time t 5 2 (one period) is displayed in
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FIG. 20. The rotating hill; solution at time t 5 6.2832, for N 5 M 5

40, dt 5 3.1415/1000.
FIG. 18. The 2D linear advection equation; solution (N 5 M 5 80)

at time t 5 2.

The cone, centered at (xc , yc) rotates around the origin
with periodicity T 5 2f. In the computations, we take (xc ,Fig. 18. The parameters of the calculations are R 5 0.4,
yc) 5 (0.65, 0) and R0 5 Ad, N 5 M 5 40, dt 5 1023f. TheN 5 80 in each direction, dt 5 51025; the parameters of
initial cone is plotted in Fig. 19; the maximum height ofthe filtering procedure are p 5 40, u 5 0.3 in each direction.
u0(x, y) on the grid is Q0.96. The nonfiltered numericalThe solution is now quite well reproduced.
solution after a revolution is displayed in Fig. 20; the maxi-

2. Nondissipation. Although centered, the spectral mum height is Q0.9. For more precise comparison, we plot
methods are not dissipative. Consider the rotating hill in Fig. 21 the sections y 5 0 of the initial data and the
problem, solution at time 2f. The peak is quite well reproduced.

Note that the viscosity parameters are the same as those
­tu 2 y­xu 1 x­yu 5 0, (4.13) used in the computation of the discontinuous solution of

the preceding test. We conclude that the viscosity needed
and the initial data, to compute a discontinuous solution does not deteriorate

the approximation of a more regular solution.

u0(x, y) 5 51 2 R(x, y)/R0,

0,

if R(x, y) # R0

if R(x, y) # R0

(4.14) 4.6. Examples vi. Euler System of Gas Dynamics (2D)

The two dimensional Euler’s equations of gas dynam-
ics arewith R(x, y) 5 ((x 2 xc )2 1 (y 2 yc )2)1/2. The exact solution

of this problem is u(x, y, t) 5 u0(X, T), where (X, Y) are
­tu 1 ­x f(u) 1 ­yg(u) 5 0 (4.15)obtained from (x, y) by a rotation of angle t,

1X

Y25 1 cos t

2sin t

sin t

cos t2 1x

y2 .

FIG. 21. The rotating hill; sections y 5 0 of the initial data (solid
FIG. 19. The rotating hill; initial data (N 5 M 5 40). line) and the solution (1) at time t 5 6.2832.
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FIG. 22. Exact solution of the shock reflection problem.

u(x, y, 0) 5 u0(x, y) (4.16)

with u 5 (r, ru, rv, e). The fluxes f and g are defined by

f 5 (ru, p 1 ru2, ruv, (e 1 p)u) (4.17)
FIG. 23. The shock reflection problem. Solution (pressure) for N 5g 5 (rv, ruv, p 1 rv2, (e 1 p)v). (4.18)

80, M 5 80.

r is the fluid density, u and v are respectively the compo-
nents of the velocity, p is the pressure. The gas is assumed

tions are imposed (on the conservative variables) by simpleto be perfect and polytropic, p 5 (c 2 1)(e 2 Asr
linear interpolation: r(j i , j 0) 5 r(j i , j 1 ), p(j i , j 0 ) 5 p(j i ,(u2 1 v2)), c 5 1.4 and e is the energy per volume unit,
j 1 ), u(j i , j 0 ) 5 2u(j i , j 1 ), v(j i , j 0 ) 5 0. The solutione 5 rE 1 As r(u2 1 v2), where E is the internal energy per
(pressure) after the shock leaves the domain is plotted inunit mass: (c 2 1)E 5 p/r.
Fig. 22 and the numerical solution is displayed Figs. 23

1. Reflection of a shock (consult [6]). We study the re- and 24; the filter parameters are u 5 0.3, p 5 50 in each di-
flection of an oblique shock on the lower side of a rectangu- rection.
lar domain defined by 0 # j # 4.12829, 0 # h # 1. The

2. Interaction between a shock wave and a rotating vortexinitial flow is given by
[4]. In this example, we consider the interaction between
a Mach 3 shock wave moving from the left to the rightr 5 1, u 5 2.9, v 5 0, p 5 1/1.4 .
and a rotating vortex initially located to the right side of
the shock. The shock front will be deformed by the vortexThe boundary conditions are:
and pressure waves are generated; consult [4] for details.

• inflow boundary conditions on j 5 0, where all the The velocity field of the vortex is the one induced by
variables are fixed taking the same values as at initial time; two rotating concentric cylinders with radius r1 and r2 ,

respectively (r1 , r2). Initially the vortex is located at the• outflow boundary conditions on the side j 5 4.12829,
point (xc , yc). The outsider cylinder is stationary and thewhere no variable is imposed.

• reflection condition on the lower side h 5 0,

v(j , 0) 5 0;

• fixed values on the upper side h 5 1 (those of the
exact solution):

r 5 1.7, u 5 2.61932, v 5 20.506339, p 5 1.52824.

The exact solution is formed by an incident shock with
angle 298 and a reflected shock with angle 23.288; see Fig.
22. The solution after the second shock is

r 5 2.68732, u 5 2.40148, v 5 0, p 5 2.93413.

The physical domain is mapped on the unit square [21,
1] 3 [21, 1], the discretisation parameters are Nx 5 Ny 5 FIG. 24. The shock reflection problem. Filtered solution, p 5 50,

u 5 0.3.N 5 80, m 5 2ÏN, dt 5 2.5 3 1025. The reflection condi-
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where (xc , yc) 5 (1.05, 0). The initial conditions for the
simulation are

rL 5 3.857143

uL 5 2.629367

vL 5 0

pL 5 10.333333
6 if x , x0,

rR 5 1

uR 5 ṽx (r)

vR 5 ṽy (r)

pR 5 1
6 if x . x0 ,

where x0 is the initial shock position. In the computations,
we take r1 5 0.15, r2 5 0.75, w 5 7.5, and x0 5 0.3.

FIG. 25. Shock-vortex interaction. Density at time t 5 0.4 (Nx 5 80, The boundary conditions are:
Ny 5 80).

• left and right sides: we keep the same field as at initial
time. This is valid as long as the waves do not reach
these boundaries.inside one rotates with the angular velocity w. Let ṽ(r) be

the radius velocity at a distance r from the center of the • bottom and top sides: we assign values computed by
vortex; we have: the spectral scheme.

Here again the physical domain [0, 3] 3 [21.5, 1.5]
is mapped on the unit square [21, 1] 3 [21, 1]; the discre-
tisation parameters are Nx 5 80, Ny 5 80, mx 5 2ÏNx ,

v(r) 5 5
wr,

w S 1
ra

1
rr2

1

b D,

0,

if 0 # r # r1 ,

if r1 # r # r2 ,

if r $ r2 ,

my 5 2ÏNy , dt 5 1024. The viscosity solution (density) at
time t 5 0.4 is displayed in Fig. 25. This solution is filtered
in the x-direction (parameters p 5 40, u 5 0.3); see Fig. 26.

where a 5 r22
1 2 r22

2 , b 5 r2
1 2 r2

2, and r 5 ((x 2 xc)2 1
5. CONCLUSION(y 2 yc)2)1/2. The velocity (u, v) induced by this vortex is

A new spectral shock-capturing method, the Legendre
spectral vanishing viscosity (LSVV) method was imple-ṽx(r) 5 2

y 2 yc

r
v(r)

mented to solve nonlinear conservation laws. This method
consists in applying a ‘‘spectral’’ viscosity on the high wave-

ṽy(r) 5
x 2 xc

r
v(r), numbers of the numerical solution. This viscosity is just

strong enough to stabilize the calculations, but sufficiently
small to retain the spectral accuracy. The results obtained
especially for the Euler system of gas dynamics are very
stimulating. The numerical solution when filtered gives a
good approximation of the exact entropic solution. How-
ever, near the discontinuity the filter procedure does not
work well. The use of the new filters analysed in [9] will
improve the results; indeed such filters are efficient even
at the discontinuity location.

Some difficulties are not considered in this paper, namely
complicated boundary conditions and complex geometries.
These points are currently under investigations in [8] by
a multidomain approach.

ACKNOWLEDGMENTS

The 2D Euler tests were performed on the CRAY C98 of the InstitutFIG. 26. Shock-vortex interaction. The same as before, filtered in the
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